z-logo
Premium
Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep‐deprived rats
Author(s) -
Chang HungMing,
Wu UnIn,
Lan ChynTair
Publication year - 2009
Publication title -
journal of pineal research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.881
H-Index - 131
eISSN - 1600-079X
pISSN - 0742-3098
DOI - 10.1111/j.1600-079x.2009.00704.x
Subject(s) - melatonin , longevity , sirtuin , hippocampus , sirtuin 1 , sleep (system call) , endocrinology , medicine , biology , circadian rhythm , biochemistry , downregulation and upregulation , genetics , enzyme , gene , nad+ kinase , computer science , operating system
  Sleep disorders cause cognitive dysfunction in which impaired neuronal plasticity in the hippocampus may underline the molecular mechanisms of this deficiency. As sirtuin 1 (SIRT1) plays an important role in maintaining metabolic homeostasis and neuronal plasticity, this study is aimed to determine whether melatonin exerts beneficial effects on preserving SIRT1 activation following total sleep deprivation (TSD). TSD was performed by disc on water method for five consecutive days. During this period, animals daily received melatonin at doses of 5, 25, 50 or 100 mg/kg. The cytochrome oxidase (COX) histochemistry, SIRT1 immunohistochemistry together with Morris water maze learning test were performed to examine the metabolic, neurochemical, as well as the behavioral changes in neuronal plasticity, respectively. The results indicate that in normal rats, numerous COX and SIRT1 positive‐labeled neurons with strong staining intensities were found in hippocampal pyramidal and granular cell layers. Following TSD, both COX and SIRT1 reactivities were drastically decreased as revealed by reduced staining pattern and labeling frequency. Behavioral data corresponded well with morphological findings in which spatial memory test in water maze was significantly impaired after TSD. However, in rats receiving different doses of melatonin, both COX and SIRT1 expressions were successfully preserved. Considerably better performance on behavioral testing further strengthened the beneficial effects of melatonin. These findings suggest that melatonin may serve as a novel therapeutic strategy directed for preventing the memory deficits resulting from TSD, possibly by effectively preserving the metabolic function and neuronal plasticity engaged in maintaining cognitive activity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here