z-logo
Premium
An evaluation of the neuroprotective effects of melatonin in an in vitro experimental model of age‐induced neuronal apoptosis
Author(s) -
Tajes Orduña Marta,
Pelegrí Gabalda Carme,
Vilaplana Hortensi Jordi,
Pallàs LLiberia Mercè,
Camins Espuny Antoni
Publication year - 2009
Publication title -
journal of pineal research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.881
H-Index - 131
eISSN - 1600-079X
pISSN - 0742-3098
DOI - 10.1111/j.1600-079x.2008.00656.x
Subject(s) - neuroprotection , melatonin , apoptosis , dna damage , protein kinase b , microbiology and biotechnology , biology , programmed cell death , cell cycle , phosphorylation , chemistry , pharmacology , neuroscience , biochemistry , dna
  The neuroprotective effects of melatonin in an experimental model of aging‐induced apoptosis have been examined. Cerebellar granule neurons show characteristics of apoptosis after 17 days in culture (DV). The addition of melatonin to neuronal cell cultures (100–500 μ m ) resulted in neuroprotective and antiapoptotic effects, which were revealed by nuclear condensed cell counting. In a thorough analysis by Western‐blot of the potential pathways responsible for melatonin’s neuroprotective effects, we found an increase in the activation of prosurvival Akt. Subsequently GSK3β inhibition and an increase in p‐FOXO1 phosphorylation occurred. In this model of aging, apoptosis was associated with an elevated DNA damage, as demonstrated by an increase in the activation of ataxia telangiectasia muted (ATM). Subsequently, downstream targets such as p53 were activated. Furthermore, the process of DNA damage was coupled to an increase in the expression of certain proteins involved in cell cycle regulation; these were cyclin D and the proapoptotic transcription factor E2F‐1. We conclude that the antiapoptotic effects of melatonin were mediated by two potential mechanisms: by increasing the activity of prosurvival pathways via Akt and by the prevention of DNA damage (via ATM inhibition) followed by the reduction of cell cycle re‐entry.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here