Premium
Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp‐9) and effector caspases (casp‐3/casp‐7) and PARP in UVR‐exposed HaCaT keratinocytes
Author(s) -
Fischer T. W.,
Zmijewski M. A.,
Wortsman J.,
Slominski A.
Publication year - 2008
Publication title -
journal of pineal research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.881
H-Index - 131
eISSN - 1600-079X
pISSN - 0742-3098
DOI - 10.1111/j.1600-079x.2007.00542.x
Subject(s) - melatonin , poly adp ribose polymerase , biology , caspase , apoptosis , microbiology and biotechnology , oxidative stress , mitochondrion , programmed cell death , chemistry , biochemistry , endocrinology , polymerase , gene
Melatonin is a recognized antioxidant with high potential as a protective agent in many conditions related to oxidative stress such as neurodegenerative diseases, ischemia/reperfusion syndromes, sepsis and aging. These processes may be favorably affected by melatonin through its radical scavenging properties and/or antiapoptotic activity. Also, there is increasing evidence that these effects of melatonin could be relevant in keratinocytes, the main cell population of the skin where it would contribute to protection against damage induced by ultraviolet radiation (UVR). We therefore investigated the kinetics of UVR‐induced apoptosis in cultured keratinocytes characterizing the morphological and mitochondrial changes, the caspases‐dependent apoptotic pathways and involvement of poly(ADP‐ribose) polymerase (PARP) activation as well as the protective effects of melatonin. When irradiated with UVB radiation (50 mJ/cm 2 ), melatonin treated, cultured keratinocytes were more confluent, showed less cell blebbing, more uniform shape and less nuclear condensation as compared to irradiated, nonmelatonin‐treated controls. Preincubation with melatonin also led to normalization of the decreased UVR‐induced mitochondrial membrane potential. These melatonin effects were followed by suppression of the activation of mitochondrial pathway‐related initiator caspase 9 (casp‐9), but not of death receptor‐dependent casp‐8 between 24 and 48 hr after UVR exposure. Melatonin down‐regulated effector caspases (casp‐3/casp‐7) at 24–48 hr post‐UV irradiation and reduced PARP activation at 24 hr. Thus, melatonin is particularly active in UV‐irradiated keratinocytes maintaining the mitochondrial membrane potential, inhibiting the consecutive activation of the intrinsic apoptotic pathway and reducing PARP activation. In conclusion, these data provide detailed evidence for specific antiapoptotic mechanisms of melatonin in UVR‐induced damage of human keratinocytes.