Premium
Melatonin effect on bone metabolism in rats treated with methylprednisolone
Author(s) -
Ladizesky Marta G.,
Boggio Verónica,
Cutrera Rodolfo A.,
Mondelo Nélida,
Mastaglia Silvina,
Somoza Julia,
Cardinali Daniel P.
Publication year - 2006
Publication title -
journal of pineal research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.881
H-Index - 131
eISSN - 1600-079X
pISSN - 0742-3098
DOI - 10.1111/j.1600-079x.2006.00316.x
Subject(s) - methylprednisolone , melatonin , endocrinology , medicine , bone remodeling , bone resorption , bone mineral , femur , densitometry , bone density , cortical bone , chemistry , osteoporosis , anatomy , surgery
The present study was undertaken to examine the effect of melatonin (25 μ g/mL of drinking water, about 500 μ g/day) on a 10‐wk long treatment of male rats with methylprednisolone (5 mg/kg s.c., 5 days/wk). Bone densitometry and mechanical properties, calcemia, phosphatemia and serum bone alkaline phosphatase activity and C‐telopeptide fragments of collagen type I (CTX) were measured. Both melatonin and methylprednisolone decreased significantly body weight (BW) and the combination of both treatments resulted in the lowest BW values found. Consequently, all results were analyzed with BW as a covariate. Densitometrically, methylprednisolone augmented bone mineral content (BMC), bone area (BA) and bone mineral density (BMD) in the entire skeleton, BMC in cortical bone, and BMC and BMD in trabecular bone. Melatonin increased BMC and BA in whole skeleton and BMC and BMD in trabecular bone. For BMC and BA of whole skeleton, BMC of cortical bone, and BMC and BMD of trabecular bone, the combination of glucocorticoids and melatonin resulted in the highest values observed. Femoral weight of rats receiving methylprednisolone or melatonin increased significantly and both treatments summated to achieve the greatest effect. In femoral biomechanical testing, methylprednisolone augmented ultimate load and work to failure significantly. Rats receiving the combined treatment of methylprednisolone and melatonin showed the highest values of work to failure. The circulating levels of CTX, an index of bone resorption, decreased after methylprednisolone or melatonin, both treatments summating to achieve the lowest CTX values found. Serum calcium increased after methylprednisolone and serum phosphorus decreased after treatment with methylprednisolone or melatonin while serum bone alkaline phosphatase levels remained unchanged. The results are compatible with the view that low doses of methylprednisolone or melatonin decrease bone resorption and have a bone‐protecting effect.