z-logo
open-access-imgOpen Access
Novel Aspects of Dopamine Oxidative Metabolism (Confounding Outcomes Take Place of Certainties
Author(s) -
Gesi Marco,
Santinami Anna,
Ruffoli Riccardo,
Conti Giuseppe,
Fornai Francesco
Publication year - 2001
Publication title -
pharmacology & toxicology
Language(s) - English
Resource type - Journals
eISSN - 1600-0773
pISSN - 0901-9928
DOI - 10.1111/j.1600-0773.2001.890501.x
Subject(s) - dopamine , oxidative deamination , monoamine oxidase , striatum , 3,4 dihydroxyphenylacetic acid , metabolite , biochemistry , metabolism , oxidative phosphorylation , biology , pharmacology , chemistry , neuroscience , enzyme , homovanillic acid , serotonin , receptor
Understanding dopamine (DA) oxidative metabolism allows to get a deeper insight into neurologic and psychiatric disorders featured by an altered DA neurotransmission as well as developing appropriate therapeutic strategies. Oxidative DA deamination is carried out by two highly conserved isoenzymes: monoamine oxidase (MAO) A and B; these isoenzymes both metabolize DA to dihydroxyphenylacetaldehyde (DOPALD), which, in turn, is converted to dihydroxyphenylacetic acid (DOPAC). In the past twenty years most studies on MAO activity were performed using brain dialysis in freely moving rats and measuring DA and DOPAC levels after administration of specific MAO inhibitors. This led to concepts on DA metabolism grounded on a single brain area (striatum) investigated, almost exclusively, in a single animal species (rat). These experiments were based on measurement of striatal levels of DOPAC which represents the indirect product of MAO activity. At present, the specific role of each MAO isoform appears to differ significantly depending on varying experimental conditions such as measuring the direct product of DA metabolism. In particular, recent studies allowed the estimate of the first metabolite (DOPALD) formed by MAO, showing that DOPAC levels do not necessarily reflect MAO activity. Again, the relative contribution of the two MAO iso forms in sustaining DA metabolism varies considerably, depending on the animal species and the specific brain area (either striatum or substantia nigra) under investigation. In this article we will briefly review these concepts in light of new evidence derived from innovative approaches: improved in vivo analysis of direct MAO metabolic products; measurement of oxidative metabolism in different parts of the DA nigrostriatal pathway; measurement of MAO activity in various animal species including MAO knock‐out mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here