
Characterization of Guanoxabenz Reducing Activity in Rat Brain
Author(s) -
Dambrova Maija,
Uhlén Staffan,
Wikberg Jarl E. S.
Publication year - 1998
Publication title -
pharmacology & toxicology
Language(s) - English
Resource type - Journals
eISSN - 1600-0773
pISSN - 0901-9928
DOI - 10.1111/j.1600-0773.1998.tb01462.x
Subject(s) - medicine
Guanoxabenz (1‐(2, 6–dichlorobenzylidene‐amino)‐3–hydroxyguanidine) and guanabenz (1‐(2, 6–dichlorobenzylidene‐amino)‐3–guanidine) are both known as centrally active antihypertensive drugs. We have previously shown that enzymatic activity in the rat spleen can induce N‐reduction of guanoxabenz, leading to high affinity α 2 –adrenoceptor binding, due to the formation of the α 2 –adrenoceptor active drug, guanabenz. The spleen activity appears to reside in xanthine oxidase as it is activated by xanthine and blocked by allopurinol. We report that high affinity guanoxabenz binding is also induced in rat brain membranes after addition of NADH or NADPH cofactors. However, the brain process was clearly different from that of the spleen, as the formation of high affinity binding in the brain was not blocked by allopurinol. Moreover the NADH/NADPH activated mechanism of the brain membranes was not blocked by carbon monoxide and SKF525A, thus the activity appears not to reside in cytochrome P450 enzymes. Instead the activity was blocked by menadione and dicumarol. We conclude that the rat cerebral cortex contains an enzymatic activity that may activate guanoxabenz leading to formation of a metabolite showing high affinity for α 2 –adrenoceptors. We also conclude that the rat brain activity is clearly distinct from that of the rat spleen.