z-logo
Premium
Independent and interactive effects of two facilitators on their habitat‐providing host plant, Spartina alterniflora
Author(s) -
Hughes A. Randall,
Moore Althea F. P.,
Piehler Michael F.
Publication year - 2014
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.1600-0706.2013.01035.x
Subject(s) - spartina alterniflora , fiddler crab , biology , ecology , facilitator , ecosystem engineer , spartina , salt marsh , habitat , host (biology) , marsh , wetland , crustacean , political science , law
The role of habitat‐providing species in facilitating associated species abundance and diversity is recognized as a key structuring force in many ecosystems. Reciprocal facilitation by associates, often involving multiple species, can be important for the maintenance of the host species. As with other multi‐species interactions (e.g. multiple predator effects), non‐additive relationships may be common among these associates, yet relatively few studies have examined potential interactions among multiple facilitator species. We combined field surveys and a mesocosm experiment to examine the independent and interactive effects of two co‐occurring facilitator species, ribbed mussels Geukensia demissa and fiddler crabs Uca pugilator , on their host salt marsh plant species, cordgrass Spartina alterniflora . We also experimentally examined how these relationships varied across different host plant genotypes. Overall, facilitator effects increased with increasing facilitator density. There was a significant interaction between mussel and fiddler crab presence, indicating that the effects of each species on cordgrass were dependent on the presence of the other facilitator species. In addition, there were strong interactions among mussels, fiddler crabs, and plant genotype, with greater variation in the performance of individual genotypes when fiddler crabs were absent. Our work reinforces the importance of considering multiple responses when assessing the functional redundancy of co‐occurring facilitators, as species are seldom completely redundant across the range of services they provide. It also highlights that the strength and direction of species interactions can vary due to genetic variation within the interacting species.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here