Premium
Partial migration in expanding red deer populations at northern latitudes – a role for density dependence?
Author(s) -
Mysterud Atle,
Loe Leif Egil,
Zimmermann Barbara,
Bischof Richard,
Veiberg Vebjørn,
Meisingset Erling
Publication year - 2011
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.1600-0706.2011.19439.x
Subject(s) - ungulate , ecology , competition (biology) , population density , snow , predation , density dependence , foraging , latitude , forage , biology , geography , population , elevation (ballistics) , fencing , habitat , demography , geometry , mathematics , meteorology , parallel computing , computer science , geodesy , sociology
Partial migration is common in ungulates living in highly seasonal environments. Typically, at higher latitudes, this involves movement between high elevation summer areas used during breeding and lowland areas with less snow used during winter. Snow depth is regarded the main cause of migration to low elevation, but it is less clear why deer migrate to high elevation in spring. The forage maturation hypothesis explains the upward migration due to plant phenology. We here present also an alternative and non‐exclusive hypothesis, that deer migrate uphill in summer to escape competition due to the high density in winter areas (the competition avoidance hypothesis). We also suggest that social fences may play a role at high population density. Based on a unique study of 141 GPS‐marked red deer from seven regions covering the main distribution in Norway, we found that the proportion of migrants in the populations varied from 38% to 100%. Migration was more common in areas with a diverse topography, i.e. for areas with access to high elevation. Further, we found evidence that migration was negatively density dependent, and that fall migration was delayed at high density. We suggest that a combination of avoidance of competition in high density winter ranges, social fencing during summer in addition to the forage maturation and predation risk avoidance hypotheses, is needed to explain migration patterns of northern ungulates.