Premium
Dominant species can produce a negative relationship between species diversity and ecosystem function
Author(s) -
Creed Robert P.,
Cherry Robert P.,
Pflaum James R.,
Wood Chris J.
Publication year - 2009
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.1600-0706.2008.17212.x
Subject(s) - detritivore , species richness , biology , ecology , ecosystem , plant litter , ecosystem engineer , taxon , species diversity
Several studies have reported a positive relationship between species richness and ecosystem functioning. However, if much of a particular ecosystem function is performed by one species (i.e. a functionally dominant species) and this species is also a competitive dominant that excludes other taxa from a habitat, then it is possible to obtain a negative relationship between richness and ecosystem functioning. Results of a leaf pack breakdown experiment in a small stream suggested that the caddisfly Pycnopsyche gentilis , a common detritivorous insect in North American headwater streams, was both a functional and competitive dominant. In a second experiment we compared the effect of Pycnopsyche on leaf breakdown to that of other detritivore taxa by enclosing them with leaf packs in a section of headwater stream in which they were uncommon ( Pycnopsyche transplant experiment). Final leaf pack mass was significantly lower in the Pycnopsyche enclosure treatment; leaves exposed to a greater diversity of detritivores displayed little reduction in leaf mass. These results demonstrated that Pycnopsyche was a functionally dominant detritivore. In a third experiment ( Pycnopsyche density experiment) we found that Pycnopsyche was also a competitively dominant species. Leaf packs and large Pycnopsyche were placed in enclosures that were permeable to the majority of other detritivores but not Pycnopsyche . Leaf mass lost increased with increasing Pycnopsyche density. Leaf packs exposed to Pycnopsyche , however, contained fewer detritivore taxa which suggested that Pycnopsyche was also a competitive dominant. There was a negative relationship between three measures of diversity and leaf litter breakdown in the Pycnopsyche density experiment. Experiments conducted in natural communities that incorporate important species interactions may produce diversity‐ecosystem function relationships other than the positive ones that are commonly reported.