z-logo
Premium
Deterministic control on community assembly peaks at intermediate levels of disturbance
Author(s) -
Lepori Fabio,
Malmqvist Björn
Publication year - 2009
Publication title -
oikos
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.672
H-Index - 179
eISSN - 1600-0706
pISSN - 0030-1299
DOI - 10.1111/j.1600-0706.2008.16989.x
Subject(s) - disturbance (geology) , intermediate disturbance hypothesis , ecology , community structure , beta diversity , streams , flood myth , environmental science , biology , geography , species diversity , biodiversity , computer science , paleontology , computer network , archaeology
Despite long‐standing research, the processes that drive community assembly remain poorly understood. We censused macroinvertebrate communities and measured flood disturbance in 17 Scandinavian mountain streams to assess the hypothesis that communities are shaped by stochastic processes under stable conditions, and increasingly by deterministic processes as disturbance becomes more severe. Each study stream was categorized as being stable (n=5), intermediate (n=7), or disturbed (n=5) depending on the severity of scouring floods. Following spring floods, the number of potential colonisers decreased with increasing disturbance, suggesting that disturbance filtered out species unable to cope with the stress involved. Communities at stable sites had the highest beta diversity, indicating that stochastic processes of community assembly were most important under the least disturbed conditions. In partial contrast with our predictions, the lowest beta diversity occurred between intermediate (not disturbed) sites, suggesting that increasing disturbance first enhances determinism but then rekindles stochasticity at severity levels beyond intermediate. Macroinvertebrate communities were shaped by deterministic processes, which recruit potential regional colonists depending on niche differences and disturbance conditions and by stochastic processes, which distribute the selected species randomly among individual localities. Although often considered opposing, stochastic and deterministic processes interact hierarchically, with relative strength modified by disturbance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here