Premium
Particle loading rates for HVAC filters, heat exchangers, and ducts
Author(s) -
Waring M. S.,
Siegel J. A.
Publication year - 2008
Publication title -
indoor air
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.387
H-Index - 99
eISSN - 1600-0668
pISSN - 0905-6947
DOI - 10.1111/j.1600-0668.2008.00518.x
Subject(s) - hvac , indoor air quality , environmental science , duct (anatomy) , energy recovery ventilation , particulates , particle deposition , ventilation (architecture) , air conditioning , environmental engineering , materials science , engineering , composite material , mechanical engineering , chemistry , medicine , range (aeronautics) , organic chemistry , pathology
The rate at which airborne particulate matter deposits onto heating, ventilation, and air-conditioning (HVAC) components is important from both indoor air quality (IAQ) and energy perspectives. This modeling study predicts size-resolved particle mass loading rates for residential and commercial filters, heat exchangers (i.e. coils), and supply and return ducts. A parametric analysis evaluated the impact of different outdoor particle distributions, indoor emission sources, HVAC airflows, filtration efficiencies, coils, and duct system complexities. The median predicted residential and commercial loading rates were 2.97 and 130 g/m(2) month for the filter loading rates, 0.756 and 4.35 g/m(2) month for the coil loading rates, 0.0051 and 1.00 g/month for the supply duct loading rates, and 0.262 g/month for the commercial return duct loading rates. Loading rates are more dependent on outdoor particle distributions, indoor sources, HVAC operation strategy, and filtration than other considered parameters. The results presented herein, once validated, can be used to estimate filter changing and coil cleaning schedules, energy implications of filter and coil loading, and IAQ impacts associated with deposited particles.