z-logo
Premium
Evaluation of the COMIS Model by Comparing Simulation and Measurement of Airflow and Pollutant Concentration
Author(s) -
Zhao Y.,
Yoshino H.,
Okuyama H.
Publication year - 1998
Publication title -
indoor air
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.387
H-Index - 99
eISSN - 1600-0668
pISSN - 0905-6947
DOI - 10.1111/j.1600-0668.1998.t01-2-00007.x
Subject(s) - airflow , pollutant , environmental science , infiltration (hvac) , tracer , meteorology , chemistry , engineering , mechanical engineering , physics , organic chemistry , nuclear physics
This paper describes the measured and calculated results of airflow rates and pollutant concentration profiles in an airtight test house, the aim being to evaluate the calculation model COMIS for multizone air infiltration and pollutant transport. Firstly, the leakage areas of internal doors, exterior walls and windows were measured by the fan pressurization method. Secondly, two measurements were carried out, assuming that the test house consisted of ten zones. The concentrations and injection rate of SF 6 were measured in order to determine the airflow rates by a system identification method. The boundary conditions, such as indoor and outdoor temperatures, wind speed and direction, and wind pressures were also recorded in situ and saved simultaneously on diskettes, using a computerized data acquisition system. Thirdly, the measured boundary data and leakage characteristics were used as input in the simulation of airflow using COMIS; initial concentrations, injection rate, along with the previous data were used for simulating pollutant transport, assuming tracer gas SF6 as a pollutant. Lastly, the comparisons between measurement and simulation results of airflow rates and pollutant concentrations were carried out by linear regression analysis. The correlation coefficient between the measured and calculated air change rates was 0.72, and that for pollutant concentration was 0.94.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here