Premium
Autophagy and pattern recognition receptors in innate immunity
Author(s) -
Delgado Monica,
Singh Sudha,
De Haro Sergio,
Master Sharon,
Ponpuak Marisa,
Dinkins Christina,
Ornatowski Wojciech,
Vergne Isabelle,
Deretic Vojo
Publication year - 2009
Publication title -
immunological reviews
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 6.839
H-Index - 223
eISSN - 1600-065X
pISSN - 0105-2896
DOI - 10.1111/j.1600-065x.2008.00725.x
Subject(s) - autophagy , biology , innate immune system , microbiology and biotechnology , pattern recognition receptor , mitochondrion , immunity , effector , receptor , acquired immune system , intracellular , immune system , immunology , genetics , apoptosis
Summary: Autophagy is a physiologically and immunologically controlled intracellular homeostatic pathway that sequesters and degrades cytoplasmic targets including macromolecular aggregates, cellular organelles such as mitochondria, and whole microbes or their products. Recent advances show that autophagy plays a role in innate immunity in several ways: (i) direct elimination of intracellular microbes by digestion in autolysosomes, (ii) delivery of cytosolic microbial products to pattern recognition receptors (PRRs) in a process referred to as topological inversion, and (iii) as an anti‐microbial effector of Toll‐like receptors and other PRR signaling. Autophagy eliminates pathogens in vitro and in vivo but, when aberrant due to mutations, contributes to human inflammatory disorders such as Crohn’s disease. In this review, we examine these relationships and propose that autophagy is one of the most ancient innate immune defenses that has possibly evolved at the time of α‐protobacteria–pre‐eukaryote relationships, leading up to modern eukaryotic cell–mitochondrial symbiosis, and that during the metazoan evolution, additional layers of immunological regulation have been superimposed and integrated with this primordial innate immunity mechanism.