z-logo
Premium
ER‐α agonist induces conversion of fibroblasts into myofibroblasts, while ER‐β agonist increases ECM production and wound tensile strength of healing skin wounds in ovariectomised rats
Author(s) -
Novotný Martin,
Vasilenko Tomáš,
Varinská Lenka,
Smetana Karel,
Szabo Pavol,
Šarišský Marek,
Dvořánková Barbora,
Mojžiš Ján,
Bobrov Nikita,
Toporcerová Silvia,
Sabol Franitšek,
Matthews Bryan J.O.,
Gál Peter
Publication year - 2011
Publication title -
experimental dermatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.108
H-Index - 96
eISSN - 1600-0625
pISSN - 0906-6705
DOI - 10.1111/j.1600-0625.2011.01284.x
Subject(s) - wound healing , agonist , in vivo , myofibroblast , fibroblast , stimulation , extracellular matrix , angiogenesis , andrology , medicine , receptor , pharmacology , chemistry , endocrinology , in vitro , surgery , biology , fibrosis , biochemistry , microbiology and biotechnology
  Oestrogen deprivation is one of the major factors responsible for many age‐related processes, including poor wound healing in women. Previously, it has been shown that oestrogens have a modulatory effect in different wound‐healing models. Therefore, in this study, the effect of selective oestrogen receptor (ER) agonists (PPT – ER‐ α agonist, DPN – ER‐ β agonist) on excisional and incisional wound‐healing models was compared in ovariectomised rats in vivo as well as on human dermal fibroblasts (HDF) and human umbilical endothelial cells (HUVEC) in vitro . In the in vivo study, 4 months after either ovariectomy or sham ovariectomy, Sprague‐Dawley rats were randomly divided into four groups and subjected to two incisional and excisional wounds: (i) control – sham operated, vehicle‐treated; (ii) ovariectomised, vehicle‐treated; (iii) ovariectomised, PPT treated; (iv) ovariectomised, DPN treated. In the in vitro study, HDFs and HUVECs were used. After treatment with ER agonists, cells were processed for immunocytochemistry and gelatin zymography. Our study shows that stimulation of ER‐ α leads to the differentiation of fibroblasts into myofibroblasts both in vivo and in vitro . On the other hand, the formation of extracellular matrix was more prominent, and wound tensile strength (TS) was increased when ER‐ β was stimulated. In contrast, stimulation of ER‐ α led to a more prominent increase in the expression of MMP‐2 and decrease in wound TS . New information is presented in this investigation concerning oestrogen replacement therapy (ERT) in different wound‐healing models. This study demonstrates that the ERT should be both wound and receptor‐type specific.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here