
Spatial ecology of large herbivore populations
Author(s) -
OwenSmith Norman
Publication year - 2014
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/j.1600-0587.2013.00613.x
Subject(s) - herbivore , ecology , population , biological dispersal , spatial heterogeneity , abundance (ecology) , spatial ecology , dominance (genetics) , anthropocene , geography , biology , biochemistry , demography , sociology , gene
Models of the dynamics of large herbivore populations represent density feedbacks on the population growth rate either directly or indirectly through interactions with vegetation resources. Neither approach incorporates the spatial heterogeneity that is an essential feature of most natural environments, and modifies the population dynamics generated. This is especially true for large herbivores exploiting food resources that are rooted in space but temporally variable in quantity and quality both seasonally and annually. In this review I explore how environmental variation at different spatiotemporal scales influences the abundance of herbivore populations controlled via resources, predators or social mechanisms. Changes in abundance can be spatially disparate and dependent on different resource components at different stages of the seasonal cycle, including buffer resources restricting population crashes in extremely adverse years. GPS telemetry enables movement responses generating spatial patterns to be documented in fine spatiotemporal detail, including migration and dispersal. Models incorporating spatial heterogeneity either implicitly or explicitly are outlined, exemplifying how herbivores cope with temporal variability by exploiting spatial variability in resources and conditions. Global human dominance is generating widened climatic variation while opportunities for herbivore movements are becoming constricted. Theoretical population ecologists need to shift their focus from the workings of demographic structure towards effects of changing environmental contexts, in order to project the likely trajectories of large herbivore populations through the Anthropocene.