z-logo
open-access-imgOpen Access
Migratory strategies of waterbirds shape the continental‐scale dispersal of aquatic organisms
Author(s) -
Viana Duarte S.,
Santamaría Luis,
Michot Thomas C.,
Figuerola Jordi
Publication year - 2013
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/j.1600-0587.2012.07588.x
Subject(s) - biological dispersal , propagule , ecology , population , biology , biodiversity , propagule pressure , seed dispersal , demography , sociology
Long distance dispersal (LDD) of propagules is an important determinant of population dynamics, community structuring and biodiversity distribution at landscape, and sometimes continental, scale. Although migratory animals are potential LDD vectors, migratory movement data have never been integrated in estimates of propagule dispersal distances and LDD probability. Here we integrated migratory movement data of two waterbird species (mallard and teal) over two continents (Europe and North America) and gut retention time of different propagules to build a simple mechanistic model of passive dispersal of aquatic plants and zooplankton. Distance and frequency of migratory movements differed both between waterbird species and continents, which in turn resulted in changes in the shapes of propagule dispersal curves. Dispersal distances and the frequency of LDD events (generated by migratory movements) were mainly determined by the disperser species and, to a lesser extent, by the continent. The gut retention time of propagules also exerted a significant effect, which was mediated by the propagule characteristics (e.g. seeds were dispersed farther than Artemia cysts). All estimated dispersal curves were skewed towards local‐scale dispersal and, although dispersal distances were lower than previous estimates based only on the vector flight speed, had fat tails produced by LDD events that ranged from 230 to 1209 km. Our results suggest that propagule dispersal curves are determined by the migratory strategy of the disperser species, the region (or flyway) through which the disperser population moves, and the propagule characteristics. Waterbirds in particular may frequently link wetlands separated by hundreds of kilometres, contributing to the maintenance of biodiversity and, given the large geographic scale of the dispersal events, to the readjustment of species distributions in the face of climate change.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here