
Multi‐scale patterns of forest structure and species composition in relation to climate in northeast China
Author(s) -
Fang Jingyun,
Wang Xiangping,
Liu Yining,
Tang Zhiyao,
White Peter S.,
Sanders Nathan J.
Publication year - 2012
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/j.1600-0587.2012.00086.x
Subject(s) - basal area , diameter at breast height , ecology , temperate climate , forest dynamics , temperate forest , temperate rainforest , spatial ecology , climate change , physical geography , forest ecology , point pattern analysis , geography , environmental science , common spatial pattern , spatial distribution , forest management , ecosystem , biology , remote sensing
Though a number of studies have focused on the factors that shape the structure and dynamics of temperate forests, little is known about whether these factors vary with spatial scale. In this study we investigated compositional and structural patterns of forests across three spatial scales (plot, local assemblages and regions) in northeast China and asked whether climatic variables shape these patterns. Using a systematic sampling design, we measured diameter at breast height (DBH) and height of trees, and recorded the abundances, percent of cover and heights of shrubs and herbs in 141 plots from 10 nature reserves. We found that summer temperature accounted for most of the variation in species composition, both within and among forest types. DBH, tree height and total basal area all increased significantly with summer temperature while stem density decreased. The DBH frequency distribution depended strongly on temperature (especially winter temperature) and varied among spatial scales, and it tended to be more left‐skewed as temperature increased. Taking together, our results suggest that a warming climate could lead to an increase in tree growth and the changes in size structure of temperate forests in northeast China. In particular, the proportion of large trees will in all likelihood increase while that of smaller trees will decrease. Shifts in forest structure in a warmed world will undoubtedly influence forest management practices, ecosystem dynamics, and species conservation.