
Increasing variation in taxonomic distinctness reveals clusters of specialists in the deep sea
Author(s) -
Zintzen Vincent,
Anderson Marti J.,
Roberts Clive D.,
Diebel Carol E.
Publication year - 2011
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/j.1600-0587.2010.06546.x
Subject(s) - ecology , variation (astronomy) , geography , biology , astrophysics , physics
Changes in biodiversity with latitude or along a given environmental gradient have been described in many studies, including for marine ecosystems. Currently there is no scientific consensus, however, regarding macroecological patterns of diversity vs depth. Here, we describe variation in the biodiversity of fishes along a depth gradient from 0 to 2000 m in the region of the Norfolk Ridge and Lord Howe Rise (Western Pacific), using data obtained during the NORFANZ voyage. We modelled α diversity (richness), β diversity (using Jaccard's coefficient), evenness, taxonomic distinctness and taxonomic resemblances among fish communities. Although α diversity did not change appreciably with depth, β diversity decreased significantly in deeper strata. Both taxonomic resemblances and Jaccard similarities diminished with depth, indicating convergence in community structure. In addition, average taxonomic distinctness showed no clear pattern with depth, but taxonomic trees constructed among species within deeper samples had more variable path‐lengths than those in shallower samples. The presence of taxonomically distinct clusters of highly related species at depth indicates specialised niches that have developed in a relatively extreme (dark, pressurized) yet stable environment. We propose that reduced β diversity and increased variation in taxonomic distinctness might serve as indicators of ecological communities living in harsh environments – a hypothesis that should be tested in other systems, such as deserts, high altitudes or latitudes.