z-logo
open-access-imgOpen Access
Environmental variation and moose Alces alces density as determinants of spatio‐temporal heterogeneity in browsing
Author(s) -
Månsson Johan
Publication year - 2009
Publication title -
ecography
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.973
H-Index - 128
eISSN - 1600-0587
pISSN - 0906-7590
DOI - 10.1111/j.1600-0587.2009.05713.x
Subject(s) - scots pine , habitat , ecology , snow , range (aeronautics) , herbivore , forage , forest management , biology , ecosystem , geography , pinus <genus> , botany , materials science , meteorology , composite material
Understanding temporal variation in habitat selection and browsing intensity by large herbivores is fundamental because of their large impact on the ecosystems. I studied the annual variation in winter browsing pressure on young trees and habitat selection by moose Alces alces over a ten year period. Specifically, the relationships between browsing pressure on Scots pine Pinus sylvestris and two birch species ( Betula ssp.) and three explanatory variables – 1) availability of forage, 2) moose density (estimated by pellet group counts) and 3) snow cover was studied. At a larger spatial scale (forest stand level) the relationship between moose habitat selection between three different habitat types (forest <30 yr, forest>30 yr and mire) and two explanatory variables, 1) snow condition and 2) moose density, were studied. Browsing pressure on Scots pine, the dominating food plant, was related to forage availability, moose density and snow condition. No significant relationships between any of the three explanatory variables and browsing pressure on the two birch species were found. Moose selection for certain habitats varied between years and was affected by number of days with >0.10 m of snow. Habitat selection was not significantly related to moose density and the relationship between overall moose density and habitat specific moose densities was proportional within the studied density range. These findings have implications for understanding varying browsing patterns – and will affect both the ability to predict herbivores’ effect on the forest ecosystem. A snow dependent browsing pattern also indicates that one can expect a long term decrease in browsing pressure on the tree and shrub layer as a consequence of the ongoing large‐scale climate change.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here