z-logo
open-access-imgOpen Access
Blockade of B‐cell‐activating factor suppresses lupus‐like syndrome in autoimmune BXSB mice
Author(s) -
Ding Hanlu,
Wang Li,
Wu Xiongfei,
Yan Jun,
He Yani,
Ni Bing,
Gao Wenda,
Zhong Xuemei
Publication year - 2010
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/j.1582-4934.2009.00817.x
Subject(s) - b cell activating factor , antibody dependent cell mediated cytotoxicity , systemic lupus erythematosus , immunology , immune system , antibody , b cell , tumor necrosis factor alpha , effector , biology , cancer research , medicine , monoclonal antibody , disease
B‐cell‐activating factor (BAFF), a member of the tumour necrosis factor superfamily, plays a critical role in the maturation, homeostasis and function of B cells. In this study, we demonstrated the biological outcome of BAFF blockade in BXSB murine lupus model, using a soluble fusion protein consisting of human BAFF‐R and human mutant IgG4 Fc. Mutation of Leu 235 to Glu in IgG4 Fc eliminated antibody‐dependent cell cytotoxicity (ADCC) and complement lysis activity, and generated a protein devoid of immune effector functions. Treatment of BXSB mice with BAFF‐R‐IgG4mut fusion protein for 5 weeks resulted in significant B‐cell reduction in both the peripheral blood and spleen. Treated mice developed lower proteinuria, reduced glomerulonephritis and much delayed host death than untreated animals. Thus, BAFF blockade with BAFF‐R‐IgG4mut protein is an effective strategy to treat B‐cell‐mediated lupus‐like pathology. Moreover, compared with other IgG isotypes with undesired effector functions, mutant IgG4 Fc should prove useful in constructing novel therapeutic reagents to block immune molecule signalling in various diseases.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here