Open Access
URG11 promotes gastric cancer growth and invasion by activation of β‐catenin signalling pathway
Author(s) -
Du Rui,
Xia Lin,
Sun Shiren,
Lian Zhaorui,
Zou Xue,
Gao Juan,
Xie Huahong,
Fan Rui,
Song Jiugang,
Li Xiaohua,
Liu Jie,
Fan Daiming
Publication year - 2010
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/j.1582-4934.2008.00622.x
Subject(s) - cancer research , gene knockdown , biology , cancer , metastasis , cancer cell , small interfering rna , cell growth , downregulation and upregulation , transfection , carcinogenesis , cell culture , gene , biochemistry , genetics
Abstract Upregulated gene 11 (URG11), a new gene upregulated by Heptatitis B Virus X protein (HBx), was previously shown to activate β‐catenin and promote hepatocellular growth and tumourigenesis. Although the oncogenic role of URG11 in the development of hepatocellular carcinoma has been well documented, its relevance to other human malignancies and the underlying molecular mechanisms remain largely unknown. Here we reported a novel function of URG11 to promote gastric cancer growth and metastasis. URG11 was found to be highly expressed in gastric cancer tissues compared with adjacent nontumourous ones by immunohistochemical staining and western blot. Knockdown of URG11 expression by small interfering RNA (siRNA) effectively attenuated the proliferation, anchorage‐independent growth, invasiveness and metastatic potential of gastric cancer cells. URG11 inhibition led to decreased expression of β‐catenin and its nuclear accumulation in gastric cancer cells and extensive costaining between URG11 and β‐catenin was observed in gastric cancer tissues. Transient transfection assays with the β‐catenin promoter showed that it was inhibited by URG11‐specific small inhibitory RNA. Moreover, suppression of endogenous URG11 expression results in decreased activation of β‐catenin/TCF and its downstream effector genes, cyclinD1 and membrane type 1 matrix metallopeptidase (MT1‐MMP), which are known to be involved in cell proliferation and invasion, respectively. Taken together, our data suggest that URG11 contributes to gastric cancer growth and metastasis at least partially through activation of β‐catenin signalling pathway. These findings also propose a promising target for gene therapy in gastric cancer.