
DNA‐hydrolysing activity of IgG antibodies from the sera of patients with diseases caused by different bacterial infections
Author(s) -
Parkhomenko Taisiya A.,
Odintsova Elena S.,
Buneva Valenti.,
Kunder Elena V.,
Zhyltsov Ivan V.,
Senkovich Sergey A.,
Generalov Igor I.,
Nevinsky Georgy A.
Publication year - 2009
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/j.1582-4934.2008.00441.x
Subject(s) - immunology , antibody , medicine , autoantibody , staphylococcus aureus , erysipelas , rheumatoid arthritis , arthritis , biology , bacteria , pathology , genetics
DNase autoantibodies (Abs) can be found in the blood of patients with several autoimmune diseases, while the blood of healthy donors or patients with diseases with insignificant disturbances of the immune status does not contain the DNase Abs. Here we have analysed for the first time the DNase activity in the patients with diseases caused by several bacterial infections. Several rigid criteria have been applied to show that the DNase activity is an intrinsic property of IgGs from the sera of patients with bacterial diseases but not from healthy donors. The relative activity of IgGs has been shown to vary extensively between the diseases analysed and from patient to patient, but most of the preparations had detectable levels of the DNase activity. On average, the catalytic activities were significantly lower than in patients with autoimmune pathologies and increased in the following order: streptococcal infection (erysipelas) < urogenital chlamydiosis associated with arthritis (Reiter’s disease) < meningococcal meningitis < shigellosis < suppurative surgical infections caused by Staphylococcus aureus < suppurative surgical infections caused by epidermal staphylococci < urogenital ureaplasmosis associated with reactive arthritis. While intact IgGs possessed this catalytic activity, separated light chains of polyclonal Abs appeared to be even more active in the hydrolysis of DNA.