
Porosome in astrocytes
Author(s) -
Lee JinSook,
Cho Won Jin,
Jeftinija Ksenija,
Jeftinija Srdija,
Jena Bhanu P.
Publication year - 2009
Publication title -
journal of cellular and molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.44
H-Index - 130
eISSN - 1582-4934
pISSN - 1582-1838
DOI - 10.1111/j.1582-4934.2008.00334.x
Subject(s) - astrocyte , secretion , microbiology and biotechnology , biology , secretory vesicle , enteroendocrine cell , exocytosis , biochemistry , hormone , neuroscience , endocrine system , central nervous system
Secretion is a universal cellular process occurring in bakers yeast, to the complex multicellular organisms, to humans beings. Neurotransmission, digestion, immune response or the release of hormones occur as a result of cell secretion. Secretory defects result in numerous diseases and hence a molecular understanding of the process is critical. Cell secretion involves the transport of vesicular products from within cells to the outside. Porosomes are permanent cup‐shaped supramolecular structures at the cell plasma membrane, where secretory vesicles transiently dock and transiently fuse to release intravesicular contents to the outside. In the past decade, porosomes have been determined to be the universal secretory machinery in cells, present in the exocrine pancreas, endocrine and neuroendocrine cells, and in neurons. In this study, we report for the first time the presence of porosomes in rat brain astrocytes. Using atomic force microscopy on live astrocytes, cup‐shaped porosomes measuring 10–15 nm are observed at the cell plasma membrane. Further studies using electron microscopy confirm the presence of porosomes in astrocytes. Analogous to neuronal porosomes, there is a central plug in the astrocyte porosome complex. Immunoisolation and reconstitution of the astrocyte porosome in lipid membrane, demonstrates a structure similar to what is observed in live cells. These studies demonstrate that in astrocytes, the secretory apparatus at the cell plasma membrane is similar to what is found in neurons.