Premium
Comparison of performance on different host plants between the B biotype and a non‐B biotype of Bemisia tabaci from Zhejiang, China
Author(s) -
Zang LianSheng,
Chen WeiQiang,
Liu ShuSheng
Publication year - 2006
Publication title -
entomologia experimentalis et applicata
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 83
eISSN - 1570-7458
pISSN - 0013-8703
DOI - 10.1111/j.1570-8703.2006.00482.x
Subject(s) - biology , whitefly , fecundity , host (biology) , homoptera , botany , squash , population , hemiptera , horticulture , pest analysis , ecology , demography , sociology
The capacity of the B biotype of the whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), to invade has often been linked to its presumably wider host range than the non‐B indigenous biotypes. However, there are few experimental studies of the relative performance of the B biotype and non‐B biotypes on different host‐plant species. Here, we compared the performance of the B biotype and an indigenous non‐B biotype (China‐ZHJ‐1) of B. tabaci from Zhejiang, China on five commonly cultivated host plants, each from a different family: cotton, tobacco, cabbage, squash, and kidney bean. We also examined the effect of rearing host plants on the performance of the B biotype. Overall, the performance of the B biotype on the five species of plants was much better than that of the indigenous non‐B population. On tobacco, cabbage, and kidney bean, no individuals of ZHJ‐1 completed development to adulthood, whereas the B biotype developed successfully from egg to adult on all three plants. On squash, the B biotype survived better, developed to adulthood earlier and had a higher fecundity than ZHJ‐1. The two biotypes performed more equally on cotton, but even on this plant the B biotype female adults lived nearly twice as long as that of ZHJ‐1 and may have realized a higher life‐time fecundity. The B biotype also showed a substantial capacity to acclimatize to alternative host plants for improved survival and reproduction, on both highly suitable and marginally suitable host plants. We conclude that the host range of the B biotype of B. tabaci may be much wider than those of some indigenous biotypes, and this advantage of the B biotype over the non‐B biotypes may assist in its invasion and displacement of some indigenous biotypes in the field.