Premium
Visual and olfactory location of biotopes, prey patches, and individual prey by the ladybeetle Chilocorus nigritus
Author(s) -
Hattingh Vaughan,
Samways Michael J.
Publication year - 1995
Publication title -
entomologia experimentalis et applicata
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.765
H-Index - 83
eISSN - 1570-7458
pISSN - 0013-8703
DOI - 10.1111/j.1570-7458.1995.tb01914.x
Subject(s) - predation , biology , foraging , biotope , eyespot , ecology , prey detection , coccinellidae , larva , predator , nocturnal , zoology , habitat
Foraging behaviour of the predator Chilocorus nigritus (Fabricius) (Coleoptera: Coccinellidae) at the three spatial levels of biotope, prey patch and individual prey, was studied in the laboratory, and related to behaviour in the field. Vertically oriented parallel lines were more attractive than the same shapes in a horizontal position. A simulated horizon with a tree line was preferred to a simulated flat horizon. They were attracted to a tree image for the first 2 h of exposure, but were less attracted after longer exposure, possibly due to habituation. Leaf shape was recognised, and simple ovate leaves were preferred to compound bipinnate leaves and to squares. These responses were associated with biotope selection for feeding and aggregation at aestivation sites. The location of prey patches by adults involved prey odour but the location of such sites by larvae did not. Adults detected individual prey visually and olfactorily over short distances but physical contact with prey was required for detection by larvae. Location of individual prey and prey patches by adults and larvae was facilitated by alternation between intensive and extensive search. The differences in the ability of larvae and adults to locate prey, stem from the adults being the active locators of biotope and patch, whereas the comparatively immobile larvae depend on their parents' ability for long‐range location of prey. Two hypotheses concerning coccinellid foraging behaviour are proposed. Firstly, the duration of response to a visual cue is related to the distance over which such a cue may be perceived. It follows that habituation to closer range cues occurs more rapidly than to longer range cues. Secondly, visual cues used by adults at the different spatial levels of prey location, and the location of mates and aggregation sites, have the same or similar shape. These results also provide guidelines for orchard management to maximise the biocontrol value of this species.