Premium
FITNESS CONSEQUENCES OF LARVAL TRAITS PERSIST ACROSS THE METAMORPHIC BOUNDARY
Author(s) -
Crean Angela J,
Monro Keyne,
Marshall Dustin J
Publication year - 2011
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2011.01372.x
Subject(s) - biology , metamorphosis , larva , hatching , trait , selection (genetic algorithm) , directional selection , disruptive selection , zoology , life history theory , ecology , evolutionary biology , natural selection , life history , genetic variation , genetics , gene , artificial intelligence , computer science , programming language
Metamorphosis is thought to provide an adaptive decoupling between traits specialized for each life‐history stage in species with complex life cycles. However, an increasing number of studies are finding that larval traits can carry‐over to influence postmetamorphic performance, suggesting that these life‐history stages may not be free to evolve independently of each other. We used a phenotypic selection framework to compare the relative and interactive effects of larval size, time to hatching, and time to settlement on postmetamorphic survival and growth in a marine invertebrate, Styela plicata . Time to hatching was the only larval trait found to be under directional selection, individuals that took more time to hatch into larvae survived better after metamorphosis but grew more slowly. Nonlinear selection was found to act on multivariate trait combinations, once again acting in opposite directions for selection acting via survival and growth. Individuals with above average values of larval traits were most likely to survive, but surviving individuals with intermediate larval traits grew to the largest size. These results demonstrate that larval traits can have multiple, complex fitness consequences that persist across the metamorphic boundary; and thus postmetamorphic selection pressures may constrain the evolution of larval traits.