Premium
EVIDENCE OF CONSTRAINED PHENOTYPIC EVOLUTION IN A CRYPTIC SPECIES COMPLEX OF AGAMID LIZARDS
Author(s) -
Smith Katie L.,
Harmon Luke J.,
Shoo Luke P.,
Melville Jane
Publication year - 2011
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2010.01211.x
Subject(s) - biology , phylogenetic tree , species complex , clade , evolutionary biology , phylogenetics , morphology (biology) , ecology , zoology , gene , genetics
Lineages that exhibit little morphological change over time provide a unique opportunity to explore whether nonadaptive or adaptive processes explain the conservation of morphology over evolutionary time scales. We provide the most comprehensive evaluation to date of the evolutionary processes leading to morphological similarity among species in a cryptic species complex, incorporating two agamid lizard species ( Diporiphora magna and D. bilineata ). Phylogenetic analysis of mitochondrial (ND2) and nuclear (RAG‐1) gene regions revealed the existence of eight deeply divergent clades. Analysis of morphological data confirmed the presence of cryptic species among these clades. Alternative evolutionary hypotheses for the morphological similarity of species were tested using a combination of phylogenetic, morphological, and ecological data. Likelihood model testing of morphological data suggested a history of constrained phenotypic evolution where lineages have a tendency to return to their medial state, whereas ecological data showed support for both Brownian motion and constrained evolution. Thus, there was an overriding signature of constrained evolution influencing morphological divergence between clades. Our study illustrates the utility of using a combination of phylogenetic, morphological, and ecological data to investigate evolutionary mechanisms maintaining cryptic species.