z-logo
Premium
COEVOLUTION OF PHENOTYPIC PLASTICITY IN PREDATOR AND PREY: WHY ARE INDUCIBLE OFFENSES RARER THAN INDUCIBLE DEFENSES?
Author(s) -
Mougi Akihiko,
Kishida Osamu,
Iwasa Yoh
Publication year - 2011
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2010.01187.x
Subject(s) - biology , coevolution , phenotypic plasticity , predation , predator , evolutionary biology , phenotype , ecology , genetics , gene , zoology
Inducible defenses of prey and inducible offenses of predators are drastic phenotypic changes activated by the interaction between a prey and predator. Inducible defenses occur in many taxa and occur more frequently than inducible offenses. Recent empirical studies have reported reciprocal phenotypic changes in both predator and prey. Here, we model the coevolution of inducible plasticity in both prey and predator, and examine how the evolutionary dynamics of inducible plasticity affect the population dynamics of a predator–prey system. Under a broad range of parameter values, the proportion of predators with an offensive phenotype is smaller than the proportion of prey with a defensive phenotype, and the offense level is relatively lower than the defense level at evolutionary end points. Our model also predicts that inducible plasticity evolves in both species when predation success depends sensitively on the difference in the inducible trait value between the two species. Reciprocal phenotypic plasticity may be widespread in nature but may have been overlooked by field studies because offensive phenotypes are rare and inconspicuous.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here