Premium
ON THE PARADIGM OF ALTRUISTIC SUICIDE IN THE UNICELLULAR WORLD
Author(s) -
Nedelcu Aurora M.,
Driscoll William W.,
Durand Pierre M.,
Herron Matthew D.,
Rashidi Armin
Publication year - 2011
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2010.01103.x
Subject(s) - multicellular organism , biology , context (archaeology) , trait , organism , survival of the fittest , selection (genetic algorithm) , altruism (biology) , programmed cell death , evolutionary biology , gene , genetics , computer science , paleontology , apoptosis , artificial intelligence , programming language
Altruistic suicide is best known in the context of programmed cell death (PCD) in multicellular individuals, which is understood as an adaptive process that contributes to the development and functionality of the organism. After the realization that PCD‐like processes can also be induced in single‐celled lineages, the paradigm of altruistic cell death has been extended to include these active cell death processes in unicellular organisms. Here, we critically evaluate the current conceptual framework and the experimental data used to support the notion of altruistic suicide in unicellular lineages, and propose new perspectives. We argue that importing the paradigm of altruistic cell death from multicellular organisms to explain active death in unicellular lineages has the potential to limit the types of questions we ask, thus biasing our understanding of the nature, origin, and maintenance of this trait. We also emphasize the need to distinguish between the benefits and the adaptive role of a trait. Lastly, we provide an alternative framework that allows for the possibility that active death in single‐celled organisms is a maladaptive trait maintained as a byproduct of selection on pro‐survival functions, but that could—under conditions in which kin/group selection can act—be co‐opted into an altruistic trait.