z-logo
Premium
GENETIC ANALYSIS OF SKULL SHAPE VARIATION AND MORPHOLOGICAL INTEGRATION IN THE MOUSE USING INTERSPECIFIC RECOMBINANT CONGENIC STRAINS BETWEEN C57BL/6 AND MICE OF THE MUS SPRETUS SPECIES
Author(s) -
Burgio Gaëtan,
Baylac Michel,
Heyer Evelyne,
Montagutelli Xavier
Publication year - 2009
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2009.00737.x
Subject(s) - biology , congenic , epistasis , quantitative trait locus , allele , skull , genetics , evolutionary biology , anatomy , gene
To assess the genetic basis of the skull shape variation and morphological integration in mice, we have used a tool based on the cross between the distantly related mouse species Mus spretus (SEG/Pas strain) and the laboratory strain C57BL/6 called interspecific recombinant congenic strains (IRCSs). The genome of each IRCS consists on average of 1.3% of SEG/Pas derived sequences, located on multiple chromosomes as small‐sized, DNA segments. Quantitative trait loci (QTL) on the skull shape, separated into dorsal and ventral sides, were analyzed in 17 IRCSs by a Procrustes superimposition method using 3D landmarks. The shapes of 16 strains differed significantly from C57BL/6. Discrepancy in the QTLs effects was found between the dorsal side and the anterior region of the ventral side due to a differential effect of the SEG/Pas alleles on the skull shape. A comprehensive analysis of all allelic combinations of the BCG‐66H strain showed strong epistatic interactions between SEG/Pas segment acting on both skull sides. Epistatic pleiotropy and covariation between sides were dependent in SEG/Pas alleles direction and contributed to the strong morphological integration between sides. Introduction of Mus spretus alleles in a C57BL/6 background induced strong morphological changes mostly in SEG/Pas alleles direction and provided evidence for high level of morphological integration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here