Premium
DEFEATING PATHOGEN DRUG RESISTANCE: GUIDANCE FROM EVOLUTIONARY THEORY
Author(s) -
Pepper John W.
Publication year - 2008
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2008.00525.x
Subject(s) - biology , drug resistance , pathogen , natural selection , selection (genetic algorithm) , resistance (ecology) , drug , class (philosophy) , evolutionary biology , computational biology , genetics , microbiology and biotechnology , ecology , pharmacology , artificial intelligence , computer science
Many of the greatest challenges in medicine and public health involve the evolution of drug resistance by pathogens. Recent advances in the theory of natural selection suggest that there are two broad classes of pathogen traits that can be targeted by drugs or vaccines. The first class, consisting of traits that benefit the individual organisms bearing them, causes a strong evolutionary response and the rapid emergence of drug resistance. The second class, consisting of traits that benefit groups of pathogen organisms including the individual provider, causes a weaker evolutionary response and less drug resistance. Although most previous drug development has targeted the first class, it would be advantageous to focus on the second class as targets for drug and vaccine development. Specific examples and test cases are discussed.