Premium
INFANTICIDE IN THE EVOLUTION OF REPRODUCTIVE SYNCHRONY: EFFECTS ON REPRODUCTIVE SUCCESS
Author(s) -
Poikonen Tanja,
Koskela Esa,
Mappes Tapio,
Mills Suzanne C.
Publication year - 2008
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2007.00293.x
Subject(s) - biology , reproductive success , population , reproduction , predation , ecology , inclusive fitness , asynchrony (computer programming) , genetic fitness , selection (genetic algorithm) , zoology , biological evolution , demography , asynchronous communication , genetics , computer network , artificial intelligence , sociology , computer science
Synchronous breeding in animals and plants has stimulated both a theoretical and empirical examination of the possible benefits of active synchronization. The selective pressures of predation and infanticide are the strongest candidates proposed to explain the evolution of reproductive synchrony. Alternatively, breeding asynchronously with conspecifics may ensure a greater availability of resources per breeder. However, the possible fitness benefits resulting from active asynchronization have not yet received attention in evolutionary ecology. Here we present a hypothesis, based on a graphical model, illustrating the costs and benefits of the two modes of reproduction. We tested the hypothesis empirically using a 2 × 2 full factorial study design, where reproductive synchrony and infanticide tactics were manipulated in enclosed populations of the bank vole. The results reveal a relationship between infanticide tactics and breeding synchrony as illustrated by our hypothesis. In general, female reproductive success (number and size of offspring surviving to weaning) was significantly lower in infanticidal populations. Moreover, an asynchronous breeding pattern proved to be advantageous in the noninfanticidal population but this advantage of asynchrony was lost as infanticide became common in the population. Our findings support the idea that synchronous reproduction could have evolved as a counterstrategy against infanticide.