Premium
RAPID ADAPTIVE DIVERGENCE IN NEW WORLD ACHILLEA , AN AUTOPOLYPLOID COMPLEX OF ECOLOGICAL RACES
Author(s) -
Ramsey Justin,
Robertson Alexander,
Husband Brian
Publication year - 2008
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2007.00264.x
Subject(s) - biology , divergence (linguistics) , ecology , achillea , evolutionary biology , philosophy , linguistics
Adaptive evolution is often associated with speciation. In plants, however, ecotypic differentiation is common within widespread species, suggesting that climatic and edaphic specialization can outpace cladogenesis and the evolution of postzygotic reproductive isolation. We used cpDNA sequence (5 noncoding regions, 3.5 kb) and amplified fragment length polymorphisms (AFLPs: 4 primer pairs, 1013 loci) to evaluate the history of ecological differentiation in the North American Achillea millefolium , an autopolyploid complex of “ecological races” exhibiting morphological, physiological, and life‐history adaptations to diverse environments. Phylogenetic analyses reveal North American A. millefolium to be a monophyletic group distinct from its European and Asian relatives. Based on patterns of sequence divergence, as well as fossil and paleoecological data, colonization of North America appears to have occurred via the Bering Land Bridge during the Pleistocene (1.8 MYA to 11,500 years ago). Population genetic analyses indicate negligible structure within North American A. millefolium associated with varietal identity, geographic distribution, or ploidy level. North American populations, moreover, exhibit the signature of demographic expansion. These results affirm the “ecotype” concept of the North American Achillea advocated by classical research and demonstrate the rapid rate of ecological differentiation that sometimes occurs in plants.