z-logo
Premium
INTEGRATING COALESCENT AND ECOLOGICAL NICHE MODELING IN COMPARATIVE PHYLOGEOGRAPHY
Author(s) -
Carstens Bryan C.,
Richards Corinne L.
Publication year - 2007
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.2007.00117.x
Subject(s) - phylogeography , coalescent theory , ecology , biology , population , environmental niche modelling , genetic structure , approximate bayesian computation , ecological niche , metapopulation , evolutionary biology , habitat , biological dispersal , genetic diversity , phylogenetics , biochemistry , demography , sociology , gene
Understanding the factors that contribute to the formation of population genetic structure is a central goal of phylogeographic research, but achieving this goal can be complicated by the stochastic variance inherent to genetic processes. Statistical approaches to testing phylogeographic hypotheses accommodate this stochasticity by evaluating competing models of putative historical population structure, often by simulating null distributions of the expected variance. The effectiveness of these tests depends on the biological realism of the models. Information from the fossil record can aid in reconstructing the historical distributions of some taxa. However, for the majority of taxa, which lack sufficient fossils, paleodistributional modeling can provide valuable spatial‐geographic data concerning ancestral distributions. Paleodistributional models are generated by projecting ecological niche models, which predict the current distribution of each species, onto a model of past climatic conditions. Here, we generate paleodistributional models describing the suitable habitat during the last glacial maximum for lineages from the mesic forests of the Pacific Northwest of North America, and use these models to generate alternative phylogeographic hypotheses. Coalescent simulations are then used to test these hypotheses to improve our understanding of the historical events that promoted the formation of population genetic structure in this ecosystem. Results from Pacific Northwest mesic forest organisms demonstrate the utility of these combined approaches. Paleodistribution models and population genetic structure are congruent across three amphibian lineages, suggesting that they have responded in a concerted manner to environmental change. Two other species, a willow and a water vole, despite being currently codistributed and having similar population genetic structure, were predicted by the paleodistributional model to have had markedly different distributions during the last glacial maximum. This suggests that congruent phylogeographic patterns can arise from incongruent ancestral distributions. Paleodistributional models introduce a much‐needed spatial‐geographic perspective to statistical phylogeography. In conjunction with coalescent models of population genetic structure, they have the potential to improve our understanding of the factors that promote population divergence and ultimately produce regional patterns of biodiversity.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here