z-logo
Premium
EVOLUTION OF INCOMPATIBILITY‐INDUCING MICROBES AND THEIR HOSTS
Author(s) -
Turelli Michael
Publication year - 1994
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.1994.tb02192.x
Subject(s) - biology , wolbachia , parasite hosting , host (biology) , allele , fecundity , genetics , gene , population , disruptive selection , natural selection , evolutionary biology , zoology , demography , sociology , world wide web , computer science
In many insect species, males infected with microbes related to Wolbachia pipientis are “incompatible” with uninfected females. Crosses between infected males and uninfected females produce significantly fewer adult progeny than the other three possible crosses. The incompatibility‐inducing microbes are usually maternally transmitted. Thus, incompatibility tends to confer a reproductive advantage on infected females in polymorphic populations, allowing these infections to spread. This paper analyzes selection on parasite and host genes that affect such incompatibility systems. Selection among parasite variants does not act directly on the level of incompatibility with uninfected females. In fact, selection favors rare parasite variants that increase the production of infected progeny by infected mothers, even if these variants reduce incompatibility with uninfected females. However, productivity‐reducing parasites that cause partial incompatibility with hosts harboring alternative variants can be favored once they become sufficiently abundant locally. Thus, they may spread spatially by a process analogous to the spread of underdominant chromosome rearrangements. The dynamics of modifier alleles in the host are more difficult to predict, because such alleles will occur in both infected and uninfected individuals. Nevertheless, the relative fecundity of infected females compared to uninfected females, the efficiency of maternal transmission and the mutual compatibility of infected individuals all tend to increase under within‐population selection on both host and parasite genes. In addition, selection on host genes favors increased compatibility between infected males and uninfected females. Although vertical transmission tends to harmonize host and parasite evolution, competition among parasite variants will tend to maintain incompatibility.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here