z-logo
Premium
SURVIVAL OF HYBRIDS IN A MOSAIC HYBRID ZONE
Author(s) -
Howard Daniel J.,
Waring Gwendolyn L.,
Tibbets C. Alana,
Gregory Pamela G.
Publication year - 1993
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.1993.tb01234.x
Subject(s) - biology , hybrid , hybrid zone , population , ecology , hatching , zoology , allele , demography , gene flow , genetics , genetic variation , botany , sociology , gene
The ground crickets Allonemobius fasciatus and A. socius meet in a mosaic hybrid zone that stretches from New Jersey at least as far west as Illinois. Within mixed populations from the contact zone, “pure” species individuals predominate. To determine whether hybrids are less viable than pure‐species individuals, and to assess whether the high proportion of pure‐species individuals in mixed populations results from hybrid inviability, we performed a cohort analysis. In this study, five mixed populations from the hybrid zone were each sampled three to five times from the fall of 1986 to the spring of 1988. Individuals were assigned to one of three categories based on their genotypes: A. socius (individuals harboring only alleles unique to A. socius) , hybrid (individuals with alleles unique to both species), and A. fasciatus (individuals harboring only alleles unique to A. fasciatus). This sampling and measurement scheme permitted monitoring of the proportion of hybrid individuals in a population over time. The results were fairly consistent. The relative survival of A. socius was greater than the relative survival of members of the other two groups in four of the five populations. The relative viability of A. fasciatus was greater than that of hybrids in one population, approximately equal to that of hybrids in two populations, and less than that of hybrids in two populations. These results not only shed light on an important component of fitness, viability from hatching to adulthood, but they demonstrate that loss of hybrid individuals during the course of the field season will not explain deviations from random mating expectations present in mixed populations in late summer. The deviations must be due to assortative mating or to a reproductive barrier operating prior to egg hatch.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here