z-logo
Premium
THE COVARIANCE STRUCTURE OF LIFE‐HISTORY CHARACTERS IN DAPHNIA PULEX
Author(s) -
Spitze Ken,
Burnson John,
Lynch Michael
Publication year - 1991
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.1991.tb04376.x
Subject(s) - biology , daphnia pulex , pleiotropy , covariance , evolutionary biology , genetic variation , avian clutch size , life history theory , genetics , reproduction , zoology , ecology , phenotype , daphnia , statistics , life history , gene , mathematics , crustacean
The genetic covariance structure for life‐history characters in two populations of cyclically parthenogenetic Daphnia pulex indicates considerable positive correlation among important fitness components, apparently at odds with the expectation if antagonistic pleiotropy is the dominant cause of the maintanence of genetic variation. Although there is no genetic correlation between offspring size and offspring number, present growth and present reproduction are both strongly positively correlated genetically with future reproduction, and early maturity is genetically correlated with larger clutch size. Although the ubiquity of antagonistic pleiotropy has been recently questioned, there are peculiarities of cyclical parthenogenesis that could lead to positive life‐history covariance even when negative covariance would be expected in a similar sexual species. These include the influence of nonadditive gene action on evolution in clonally reproducing organisms, and the periodic release of hidden genetic variance within populations of cyclical parthenogens. Examination of matrix similarity, using the bootstrap for distribution‐free hypothesis testing, reveals no evidence to suggest that the genetic covariance matrices differ between the populations. However, there is considerable evidence that the phenotypic and environmental covariance matrices differ between populations. These results indicate approximate stability of the genetic covariance matrix within species, an important assumption of many phenotypic evolution models, but should caution against the use of phenotypic in place of genetic covariance matrices.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here