z-logo
Premium
EVOLUTION, PHYLOGENY, SEXUAL DIMORPHISM AND MATING SYSTEM IN THE GRACKLES ( QUISCALUS SPP.: ICTERINAE)
Author(s) -
Björklund Mats
Publication year - 1991
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.1991.tb04332.x
Subject(s) - biology , sexual dimorphism , sexual selection , polygyny , mating system , mating , zoology , evolutionary biology , stabilizing selection , genetic variation , demography , genetics , population , sociology , gene
According to theory, two consequences of sexual selection are sexual dimorphism in size and secondary sexual characteristics, due to either intra‐ or intersexual selection. In this paper I suggest three criteria for the test of an evolutionary hypothesis involving quantitative morphological characters. First, the postulated change must be shown to have occurred in evolutionary time. Second, this change must be positively correlated with a change in the proposed selective agent. Third, given two taxa with different degrees of sexual size dimorphism and different mating system, the possible influence of drift must be rejected. If the hypothesis is not rejected by these three criteria, then we still have no proof of causality, but we can at least be more confident about its plausibility. This is applied to the particular hypothesis that sexual dimorphism in the Boat‐tailed and Great‐tailed grackles ( Quiscalus spp; Icterinae; Aves) is caused by the highly polygynous mating system in these species. In relation to an outgroup, both species have increased disproportionately in male tarsus and tail size, creating an increased sexual dimorphism. This has cooccurred with the evolution of their particular mating system. However, the variance among species in male tarsus size can be accounted for by drift, and need not be a result of selection for increased size. In contrast, the variance among species in male tail size was much larger than expected under a null model of drift, indicating directional selection for long tails. The variance in female tail size was not larger than expected by drift, whereas the variance in female tarsus size was in fact lower than expected by drift, indicating stabilizing selection. The data are consistent with the hypothesis with regard to tail size, but not with regard to body size.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here