Premium
THE ROLE OF PHYLLOTACTIC PATTERN AS A “DEVELOPMENTAL CONSTRAINT” ON THE INTERCEPTION OF LIGHT BY LEAF SURFACES
Author(s) -
Niklas Karl J.
Publication year - 1988
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.1988.tb04103.x
Subject(s) - phyllotaxis , biology , interception , limiting , botany , rosette (schizont appearance) , evolutionary biology , ecology , meristem , shoot , engineering , immunology , mechanical engineering
Computer simulations of model plants are used to assess the influence of leaf shape, size, and pattern of arrangement (= phyllotaxy) on the direct solar radiation intercepted by leaf surfaces. Changes in phyllotaxy significantly influence light interception (and, by inference, net assimilation rate) for rosette growth habits. However, changes in leaf shape and orientation and in stem length can compensate for the negative effects of leaf overlap produced by phyllotactic patterns. Phyllotaxy is viewed as a developmental limiting factor in photobiology that may necessitate compensatory changes in other morphological features not directly controlled by patterns of leaf initiation. This distinguishes it from functioning as a “developmental constraint” sensu stricto and may provide a paradigm for other features in plant evolution.