z-logo
Premium
GENETIC DIVERGENCE AND GEOGRAPHIC SPECIATION IN LAYIA (COMPOSITAE)
Author(s) -
Warwick S. I.,
Gottlieb L. D.
Publication year - 1985
Publication title -
evolution
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.84
H-Index - 199
eISSN - 1558-5646
pISSN - 0014-3820
DOI - 10.1111/j.1558-5646.1985.tb05689.x
Subject(s) - biology , reproductive isolation , genetic algorithm , phosphoglucomutase , genetic divergence , evolutionary biology , allopatric speciation , genetic distance , genetics , gene , ecology , genetic variation , genetic diversity , enzyme , biochemistry , population , demography , sociology
Electrophoretic variability was examined in six species of Layia (Compositae), native to California, which have previously been studied by Clausen, Keck, and Hiesey, and are regarded as a classic example of geographic speciation in plants. The study was carried out to test the hypothesis that the extent of divergence in structural genes coding enzymes is concordant with divergence in morphological characteristics, ecological traits, and reproductive isolation. Eleven enzymes specified by 17 loci were analyzed. The genetic identity values were consistent with those expected on the model that the species diverged gradually as they adapted to geographically separate habitats. Thus, the values between the three species complexes proposed by Clausen, Keck, and Hiesey (L. chrysanthemoides/L. fremontii; L. jonesii/L. leucopappa/L. munzii; L. platyglossa) were substantially lower than the values between species within the complexes. The results provide an important contrast to the very high genetic identities between species which originated rapidly from their progenitors. The electrophoretic results also provided evidence that the cytosolic isozyme of phosphoglucomutase and the cytosolic NADP‐dependent isocitrate dehydrogenase in the six species are coded by duplicate genes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here