Premium
Direct Associations or Internal Transformations? Exploring the Mechanisms Underlying Sequential Learning Behavior
Author(s) -
Gureckis Todd M.,
Love Bradley C.
Publication year - 2010
Publication title -
cognitive science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.498
H-Index - 114
eISSN - 1551-6709
pISSN - 0364-0213
DOI - 10.1111/j.1551-6709.2009.01076.x
Subject(s) - sequence learning , cognition , set (abstract data type) , artificial intelligence , mechanism (biology) , computer science , class (philosophy) , cognitive psychology , machine learning , cognitive science , psychology , neuroscience , philosophy , epistemology , programming language
We evaluate two broad classes of cognitive mechanisms that might support the learning of sequential patterns. According to the first, learning is based on the gradual accumulation of direct associations between events based on simple conditioning principles. The other view describes learning as the process of inducing the transformational structure that defines the material. Each of these learning mechanisms predicts differences in the rate of acquisition for differently organized sequences. Across a set of empirical studies, we compare the predictions of each class of model with the behavior of human subjects. We find that learning mechanisms based on transformations of an internal state, such as recurrent network architectures (e.g., Elman, 1990), have difficulty accounting for the pattern of human results relative to a simpler (but more limited) learning mechanism based on learning direct associations. Our results suggest new constraints on the cognitive mechanisms supporting sequential learning behavior.