z-logo
Premium
Glycogen Accumulation and Degradation by the Trichomonads T richomonas vaginalis and T richomonas tenax
Author(s) -
Nielsen Tyler J.,
Pradhan Prajakta,
Brittingham Andrew,
Wilson Wayne A.
Publication year - 2012
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/j.1550-7408.2012.00624.x
Subject(s) - glycogen , glycogen phosphorylase , biology , glycogen synthase , biochemistry , tenax , phosphorylase kinase , recombinant dna , gene , chemistry , chromatography , gas chromatography
Several species of trichomonad have been shown to accumulate significant quantities of glycogen during growth, suggesting an important role for this compound in cell physiology. We provide the first analysis of the changes in glycogen content and glycogen phosphorylase activity that occur during in vitro growth of two trichomonad species: T richomonas vaginalis and T richomonas tenax . Both species accumulated glycogen following inoculation into fresh medium and utilized this compound during logarithmic growth. Glycogen phosphorylase activity also varied during growth in a species‐specific manner. The expression of phosphorylase genes in T . vaginalis remained constant during growth and thus transcriptional control did not explain the observed fluctuations in phosphorylase activity. After cloning, expression, and purification, two recombinant glycogen phosphorylases from T . vaginalis and one recombinant glycogen phosphorylase from T . tenax had robust activity and, in contrast to many other eukaryotic glycogen phosphorylases, did not appear to be regulated by reversible protein phosphorylation. Furthermore, allosteric regulation, if present, was not mediated by compounds known to impact the activity of better characterized phosphorylases.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here