z-logo
Premium
Calmodulin Localization and its Effects on Endocytic and Phagocytic Membrane Trafficking in Paramecium multimicronucleatum
Author(s) -
FOK AGNES K.,
AIHARA MARILYNN S.,
ISHIDA MASAKI,
ALLEN RICHARD D.
Publication year - 2008
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/j.1550-7408.2008.00347.x
Subject(s) - vacuole , biology , microbiology and biotechnology , vesicle , paramecium , contractile vacuole , cytosol , microtubule , cytoskeleton , endocytic cycle , phagosome , biophysics , endocytosis , cytoplasm , biochemistry , membrane , cell , intracellular , enzyme
. In ciliates, calmodulin (CaM), as in other cells, has multiple functions, such as activation of regulatory enzymes and modulating calcium‐dependent cellular processes. By immunogold localization, CaM is concentrated at multiple sites in Paramecium . It is seen scattered over the cytosol, but bound to its matrix, and is concentrated at the pores of the contractile vacuole complexes and with at least three microtubular arrays. It was localized peripheral to the nine‐doublet microtubules of the ciliary axonemes. The most striking localization was on the akinetic side only of the cytopharyngeal microtubular ribbons opposite the side where the discoidal vesicles, acidosomes and the 100‐nm carrier vesicles bind and move. CaM was also present at the periphery of the postoral microtubular bundles along which the early vacuole moves and was associated with the cytoproct microtubules that guide the spent digestive vacuoles to the cytoproct. It was not found on the membranes of, or in the interior of nuclei, mitochondria, phagosomes, and trichocysts, and was only sparsely scattered over the cytosolic sides of discoidal vesicles, acidosomes, lysosomes, and digestive vacuoles. Together the associations with specific microtubular arrays and the effects of trifluoperazine and calmidazolium indicate that CaM is involved (i) in vesicle transport to the cytopharynx area for vacuole formation and subsequent vacuole acidification, (ii) in early vacuole transport along the postoral fiber, and (iii) in transporting the spent vacuole to the cytoproct. Higher CaM concentrations subjacent to the cell's pellicle and close to the decorated tubules of the contractile vacuole complex may support a role for CaM in ion traffic.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here