z-logo
Premium
A Hierarchical View of Convergent Evolution in Microbial Eukaryotes 1
Author(s) -
LEANDER BRIAN S.
Publication year - 2008
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/j.1550-7408.2008.00308.x
Subject(s) - convergent evolution , biology , multicellular organism , evolutionary biology , phylogenetic tree , phylogenetics , parallel evolution , common descent , character evolution , tree of life (biology) , coevolution , molecular evolution , natural selection , convergence (economics) , lineage (genetic) , biological evolution , clade , selection (genetic algorithm) , genetics , gene , artificial intelligence , computer science , economics , economic growth
ABSTRACT. Distinguishing convergent evolution from other causes of similarity in organisms is necessary for reconstructing phylogenetic relationships, inferring patterns of character evolution, and investigating the forces of natural selection. In contrast to animals and land plants, the pervasiveness and adaptive significance of convergent evolution in microbes has yet to be systematically explored or articulated. Convergent evolution in microbial eukaryotes, for instance, often involves very distantly related lineages with relatively limited repertoires of morphological features. These large phylogenetic distances weaken the role of ancestral developmental programs on the subsequent evolution of morphological characters, making convergent evolution between very distantly related lineages fundamentally different from convergent evolution between closely related lineages. This suggests that examples of convergence at different levels in the phylogenetic hierarchy offer different clues about the causes and processes of macroevolutionary diversification. Accordingly (and despite opinions to the contrary), I recognize three broad and overlapping categories of phenotypic convergence—“parallel”, “proximate” and “ultimate”—that represent either (1) subcellular analogues, (2) subcellular analogues to multicellular systems (and vice versa), or (3) multicellular analogues. Microbial eukaryotes living in planktonic environments, interstitial environments, and the intestinal environments of metazoan hosts provide compelling examples of ultimate convergence. After describing selected examples in microbial eukaryotes, I suggest some future directions needed to more fully understand the hierarchical structure of convergent evolution and the overall history of life.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here