Premium
Compensatory releases reduce genetic differentiation among Atlantic salmon populations in the Baltic Sea: evidence from the River Ume‐Vindelälven
Author(s) -
Vasemägi A.
Publication year - 2004
Publication title -
journal of fish biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.672
H-Index - 115
eISSN - 1095-8649
pISSN - 0022-1112
DOI - 10.1111/j.1550-7408.2007.auindex_1.x-i1
Subject(s) - hatchery , biology , fishery , baltic sea , population , gene flow , ecology , genetic variation , oceanography , fish <actinopterygii> , demography , sociology , geology , biochemistry , gene
About 90% of salmon smolts in the Baltic Sea derive from hatchery enhancement programmes designed to compensate for loss of catches and genetic resources due to the damming of salmon rivers. The potential threat of genetic homogenization from extensive hatchery releases, however, has not been thoroughly investigated. We provide evidence that straying from deliberate releases poses a threat to indigenous populations by identifying the origin of 127 fin‐clipped (hatchery) salmon caught in the River Ume‐Vindelälven during 1997 to 2000, using mtDNA and six microsatellite loci. The analysis of eight potential donor stocks revealed that compensatory releases from the R. Ångerman and R. Luleälven hatcheries have resulted in a significant amount of straying to the river Ume‐Vindelälven (at least 10 and 12 migrants per year). As predicted to due to increased migration, the analysis of temporal samples from the wild population of R. Vindelälven showed a decreasing trend in genetic differentiation estimates (measured as Fst) relative to hatchery the hatchery strains of R. Ångermanälven and R. Luleälven. Our results suggest that gene flow from compensatory releases poses a serious threat to the genetic makeup of the existing wild populations in the Baltic.