Premium
Phylogenetic Diversity of Parabasalian Symbionts from Termites, Including the Phylogenetic Position of Pseudotrypanosoma and Trichonympha
Author(s) -
Keeling Patrick J.,
Poulsen Nicole,
Mcfadden Geoffrey I.
Publication year - 1998
Publication title -
journal of eukaryotic microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 1066-5234
DOI - 10.1111/j.1550-7408.1998.tb04561.x
Subject(s) - biology , phylogenetic tree , ribosomal rna , phylogenetics , phylogenetic diversity , lineage (genetic) , evolutionary biology , gene , genetics
ABSTRACT The phylogenetic diversity of parabasalian flagellates from termite hindguts has been examined by small subunit ribosomal RNA (rRNA) amplification and sequencing. Two species of particular interest, the giant trichomonad Pseudotrypanosoma giganteum and the hypermastigote Trichonympha magna, were isolated from the gut of Porotermes adamsoni by micropipetting. and the rRNA genes from these small populations amplified and sequenced. rRNA genes representing Hypermastigida and the Trichomonadida families Devescovinidae and Trichomonadidae. were also recovered by amplification from whole hindguts of three termites, P. adamsoni, Cryptotermes brevis , and Cryptotermes dudleyi. The parabasalian rRNA genes from C. brevis were found to comprise a unique and extremely heterogeneous lineage with no clear affinities to any known parabasalian rRNAs. In addition, one of the sequences isolated from P. Adamsoni was found to be similar to another uncharacterised rRNA gene from Reticulitermes flavipes. The phylogeny of all known parabasalian small subunit rRNAs was examined with these new sequences. We find many taxonomic groups to be supported by rRNA, but not all. We have found the root of parabasalia to be very difficult to discern accurately, but have nevertheless identified several possible positions.