z-logo
Premium
The Cytology of Sheep Rumen Ciliates. III. Ultrastructure of the Genus Entodinium (Stein) 1
Author(s) -
FURNESS D. N.,
BUTLER R. D.
Publication year - 1985
Publication title -
the journal of protozoology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.067
H-Index - 77
eISSN - 1550-7408
pISSN - 0022-3921
DOI - 10.1111/j.1550-7408.1985.tb03105.x
Subject(s) - biology , contractile vacuole , tuft , anatomy , ultrastructure , ciliata , microtubule , protozoa , vacuole , botany , microbiology and biotechnology , cytoplasm , materials science , composite material
This study examines previously undescribed general and cytopharyngeal features of the genus Entodinium . The cytopharynx contains three types of microtubular ribbons underlying the cytostomal membrane as well as a loose palisade of nematodesmata. A protoesophagus composed of microtubular bundles associated with a fibrous wall lies internally to one side of an extrusible peristome on which the adoral zone of syncilia (AZS) is mounted. Macronuclear structures are very similar to those of other ophryoscolecids. The micronucleus has chromatin bodies forming a compact mass but lacks the thick wall found in other species. A tubular spongiome surrounds the contractile vacuole and the cytoproct is relatively undifferentiated. Cortical structure follows the usual five‐layered ophryoscolecid pattern with subcortical barren kinetosomes arranged into indistinct kineties. The infraciliature of the AZS has kinetosomes set upon a subkinetal rod and with associated bifurcated kinetodesmata and transverse microtubules, some of which extend into the cytopharynx. Components newly described for Entodinium are the one to three postciliary microtubules and the interkinetosomal centro‐lateral strand, all of which are present in other species of ophryoscolecid ciliates. The infraciliature of the paralabial ciliary tuft shows similar components to that of the main AZS, but lacks the subkinetal rod. The microtubular components of the cytopharynx are discussed in relation to the “alimentary” structures in other ophryoscolecids, and a relationship of these structures to dietary differences is suggested.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here