z-logo
open-access-imgOpen Access
Maximum P Wave Duration and P Wave Dispersion in Adult Patients with Secundum Atrial Septal Defect: The Impact of Surgical Repair
Author(s) -
Guray Umit,
Guray Yesim,
Mecit Burcu,
Yilmaz M. Birhan,
Sasmaz Hatice,
Korkmaz Sule
Publication year - 2004
Publication title -
annals of noninvasive electrocardiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.494
H-Index - 48
eISSN - 1542-474X
pISSN - 1082-720X
DOI - 10.1111/j.1542-474x.2004.92532.x
Subject(s) - medicine , atrial fibrillation , foramen secundum , septum secundum , cardiology , sinus rhythm , electrocardiography , anesthesia , surgery , patent foramen ovale , migraine
Background:  Patients with atrial septal defect (ASD) have an increased risk for atrial fibrillation (AF). Previously it was shown that maximum P wave duration and P wave dispersion in 12‐lead surface electrocardiograms are significantly increased in individuals with a history of paroxysmal AF. We studied P maximum and P dispersion in adult patients with ASD during normal sinus rhythm. In addition, the impact of surgical closure of ASD on these variables within 1 year after surgery was evaluated. Methods:  Thirty‐four patients (21 women, 13 men; mean age: 35 ± 11 years) operated on for ostium secundum type ASD and 24 age‐matched healthy subjects (13 women, 11 men; mean age: 37 ± 10 years) were investigated. P maximum, P minimum, and P dispersion (maximum – minimum P wave duration) were measured from the 12‐lead surface electrocardiography. Results:  P maximum was found to be significantly longer in patients with ASD as compared to controls (115.2 ± 9 vs 99.3 ± 14 ms; P < 0.0001). In addition, P dispersion of the patients was significantly higher than controls (37 ± 9 vs 29.8 ± 10 ms; P = 0.003). P minimum was not different between the two groups (P = 0.074). After surgical repair of ASD, 10 patients (29%) experienced one or more episodes of paroxysmal AF. Patients with postoperative AF were older (45 ± 6 vs 30 ± 10 years; P = 0.001), and had a higher preoperative pulmonary artery peak systolic pressure as compared to those without postoperative AF (51 ± 11 vs 31 ± 9 mmHg; P < 0.0001). No significant difference in the pulmonary‐to‐systemic flow ratio was observed preoperatively between the two groups (P = 0.56). P maximum and P dispersion were significantly higher in patients with postoperative paroxysmal AF at baseline and at postoperative first month, sixth month, and first year as compared to those without it (for P maximum P = 0.027, P = 0.014, P = 0.001, P < 0.0001, respectively; for P dispersion P = 0.037, P = 0.026, P = 0.001, P < 0.0001, respectively). In addition, in patients with postoperative AF, no significant changes were detected in both of these P wave indices during postoperative follow‐up. However, in the other group, P maximum and P dispersion were found to be significantly decreased at postoperative 6 months and 1 year as compared to baseline. P minimum was similar throughout the postoperative follow‐up as compared to baseline in both groups. Conclusions:  Mechanical and electrical changes in atrial myocardium may cause greater P maximum and P dispersion in patients with ASD. Surgical closure of the ASD can regress these pathological changes of atrial myocardium with a result in decreased P maximum and P dispersion. However, higher P maximum and P dispersion at baseline, which have not decreased after surgery, may be associated with postoperative paroxysmal AF, especially for older patients.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here