
Weighing the QT Intervals with the Slope or the Amplitude of the T Wave
Author(s) -
Lund Kaspar,
Nygaard Hans,
Kirstein Pedersen Anders
Publication year - 2001
Publication title -
annals of noninvasive electrocardiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.494
H-Index - 48
eISSN - 1542-474X
pISSN - 1082-720X
DOI - 10.1111/j.1542-474x.2001.tb00132.x
Subject(s) - reproducibility , qt interval , medicine , amplitude , standard deviation , electrocardiography , cardiology , mathematics , statistics , physics , optics
Objective: The reproducibility of QT interval measurements is low, even for the mean QT interval based on the standard ECG. In this study we analyzed whether the reproducibility of the mean weighed QT interval was better than the simple mean QT interval. The weighing was based on the amplitude of the T wave or the slope of the steepest tangent on the terminal part of the T wave. Material and methods: 12‐lead ECGs of 130 postmyocardial infarction patients were obtained. The QT intervals were measured by the tangent‐method on two occasions by the same observer Mismatch QT intervals were defined as QT intervals that were measured at only one occasion. Sixteen ECGs were rejected. The data were split into 34 and 80 ECGs for optimization and validation of the weighing, respectively. The weighed QT dispersion was calculated as the weighed mean of the three longest minus the weighed mean of the three shortest QT intervals. Results: Weighing with the slope increased the reproducibility by 41% (P = 3 10 ‐6 ), but weighing with the amplitude reduced it by 20% (P = 0.02). However, if measurements with errors above 75 ms were rejected, weighing with the slope or the amplitude increased the reproducibility with 26% and 20% (P = 0.02), respectively. Weighing did not change the reproducibility of the weighed QT dispersion. Conclusion: Weighing with the slope improved the reproducibility of the mean weighed QT interval. However, if measurements with errors above 75 ms were rejected, weighing with the amplitude also increased the reproducibility. Weighing did not change the reproducibility of the weighed QT dispersion. Weighing is particularly efficient at reducing the negative impact of mismatch QT intervals on the reproducibility. A.N.E. 2002;7(1):4–9