Premium
Causal Inference on Quantiles with an Obstetric Application
Author(s) -
Zhang Zhiwei,
Chen Zhen,
Troendle James F.,
Zhang Jun
Publication year - 2012
Publication title -
biometrics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.298
H-Index - 130
eISSN - 1541-0420
pISSN - 0006-341X
DOI - 10.1111/j.1541-0420.2011.01712.x
Subject(s) - quantile , estimator , econometrics , causal inference , weighting , statistics , observational study , inference , inverse probability weighting , computer science , statistical inference , population , mathematics , medicine , artificial intelligence , environmental health , radiology
Summary The current statistical literature on causal inference is primarily concerned with population means of potential outcomes, while the current statistical practice also involves other meaningful quantities such as quantiles. Motivated by the Consortium on Safe Labor (CSL), a large observational study of obstetric labor progression, we propose and compare methods for estimating marginal quantiles of potential outcomes as well as quantiles among the treated. By adapting existing methods and techniques, we derive estimators based on outcome regression (OR), inverse probability weighting, and stratification, as well as a doubly robust (DR) estimator. By incorporating stratification into the DR estimator, we further develop a hybrid estimator with enhanced numerical stability at the expense of a slight bias under misspecification of the OR model. The proposed methods are illustrated with the CSL data and evaluated in simulation experiments mimicking the CSL.